投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

改进网络的光学遥感图像云去除方法(4)

来源:遥感学报 【在线投稿】 栏目:期刊导读 时间:2021-03-07
作者:网站采编
关键词:
摘要:3 结果与分析 为验证本研究提出的改进CGAN模型的有效性,在选用的RICE数据集上进行了对比试验。首先分析改进CGAN模型中优化的生成器网络结构和复合损失

3 结果与分析

为验证本研究提出的改进CGAN模型的有效性,在选用的RICE数据集上进行了对比试验。首先分析改进CGAN模型中优化的生成器网络结构和复合损失函数对模型性能的影响;然后对比改进CGAN模型、原始CGAN模型、传统的光学遥感图像去云方法以及深度学习方法的去云效果。试验过程中传统的光学遥感图像去云方法均在Matlab软件中实现,本文研究方法、原始CGAN模型以及深度学习方法均采用python语言在Tensorflow框架下进行网络训练。

3.1 生成器网络结构优化对模型性能影响

本研究的生成器采用带有空间金字塔池化结构网络结构,相较于原始CGAN网络模型所使用的Unet结构,在增加网络深度和宽度的同时增强了网络的多尺度特征提取能力。图2和图3分别为改进网络结构与原始网络结构去除薄云和厚云的质量评估对比图。

从图2的结果中可知,在迭代次数较小(<50)的情况下使用本研究的生成器结构与Unet结构进行薄云去除的效果差别不大,但随着迭代次数的增加,使用本研究生成器结构得到的PSNR值和SSIM值均高于使用Unet结构。迭代次数为200(全部训练完成)时, Unet结构得到的PSNR值为37.40 dB,SSIM值为0.95。而本研究生成器结构得到的PSNR值为37.91 dB,SSIM值为0.97,比前者PSNR值提高0.51 dB,SSIM值提高0.02。

从图3的结果中可知,针对厚云去除效果,迭代次数为200时,使用Unet结构得到的PSNR值为29.91 dB,SSIM值为0.93,本研究生成器结构得到的PSNR值为34.33 dB,SSIM值为0.96,比前者PSNR值提高4.42 dB,SSIM值提高了0.03。

注:PSNR为峰值信噪比;SSIM为结构相似性。下同。Note: PSNR: Peak Signal-to-Noise Ratio; SSIM: Structural SIMilarity. Same below.图2 改进网络对去除薄云的效果影响Fig. 2 Effects of improved network on thin cloud removal

图3 改进网络对去除厚云的效果影响Fig. 3 Effects of improved network on thick cloud removal

综合分析薄云和厚云去除效果可知,相较于使用Unet结构,使用本研究结构可以得到更高的PSNR值与SSIM值,生成的无云光学遥感图像质量也相对更好。

3.2 损失函数优化对模型性能影响

为了生成更高质量的无云光学遥感图像,本研究使用了对抗损失和回归损失相结合的复合损失函数。在RICE数据集上对其有效性进行验证,从表1的去云质量评估结果中可以看出,本研究使用的复合损失函数在PSNR和SSIM上均有提升,在薄云和厚云上PSNR值分别提升0.66和1.32 dB,SSIM值分别提升0.01和0.04。

表1 不同损失函数的去云质量评估结果Table. 1 Assessment of cloud removal quality with different losses损失函数Loss function薄云Thin cloud厚云Thick cloud PSNR/dBSSIMPSNR/dBSSIM LCGAN +

不同地形的光学遥感图像在不同损失下的去云效果如图4所示,相较于单独使用对抗损失函数,加入了L1回归损失的复合损失函数生成的无云光学遥感图像在图像的亮度、对比度和颜色方面恢复的更好,去云区域中地物的细节信息也更为清晰,这是因为复合损失函数可以使模型更为准确的学习到有云和无云光学遥感图像像素间的映射关系。在平原,使用对抗损失函数的PSNR值和SSIM值分别为23.32 dB和0.83,而复合损失函数分别为24.75 dB和0.84。在裸地,使用对抗损失函数的PSNR值和SSIM值分别为24.63 dB和0.91,而复合损失函数分别为30.00 dB和0.91。二者的SSIM值虽然相似,但是使用复合损失函数生成的无云光学遥感图像具有更大的PSNR值,PSNR值越大,说明处理后的图像与真实图像之间每个像素点的像素值越接近,图像的失真越小。图像质量更高。

注:RCless为真实无云遥感图像。下同。Note: RCless is real cloudless remote sensing image. Same below.图4 不同地形下不同损失函数的去云效果Fig.4 Effects of different loss functions on cloud removal in different topographies

综合表1和图4的结果可以发现,将L1损失和对抗损失相结合得到的复合损失函数能有效提升改进CGAN模型的训练效果,但由于L1损失函数存在稳定性较差,易陷入局部最优解的问题,因此,本研究选取5次重复试验结果加以对比,验证L1损失函数对模型稳定性的影响。5次重复试验的学习率、最大训练次数等参数设置保持相同,结果如表2所示。

表2 模型的稳定性评估Table 2 Assessment of model stability数据集Data setPSNR/dBSSIM 平均值Average方差Variance平均值Average方差Variance 薄云Thin 9 厚云Thick 1

由表2可知,RICE1(薄云)数据PSNR指标的平均值为24.99 dB,方差值为0.007 0 dB;SSIM指标的平均值为0.90,方差值为0.000 9。RICE2(厚云)数据PSNR指标的平均值为22.79 dB,方差值为0.001 6 dB;SSIM指标的平均值为0.82,方差值为0.0021。由此可见,加入的L1损失函数对模型的稳定性没有太大的影响。

文章来源:《遥感学报》 网址: http://www.ygxbzz.cn/qikandaodu/2021/0307/548.html



上一篇:项目驱动式教学法在遥感实验课程在线教学中的
下一篇:基于多源遥感的聊城市绿地空间特征研究

遥感学报投稿 | 遥感学报编辑部| 遥感学报版面费 | 遥感学报论文发表 | 遥感学报最新目录
Copyright © 2018 《遥感学报》杂志社 版权所有
投稿电话: 投稿邮箱: